Indian Statistical Institute, Bangalore Centre. End-Semester Exam : Discrete Mathematics I - B2

Instructor : Yogeshwaran D.

Date : Nov 24, 2023.

Max. points : 40.

Time Limit : 3 hours.

There are two parts to the question paper - PART A and PART B. Read the instructions for each section carefully.

1 PART A : MULTIPLE-CHOICE QUESTIONS - 10 Points.

Please write only the correct choice(s) (for ex., (a), (b) et al.) in your answer scripts. No explanations are needed. Write PART A answers in a separate page.

Some questions will have multiple correct choices. Answer all questions. Each question carries 2 points. 1 point will be awarded if only some correct choices are chosen and no wrong choices are chosen.

- 1. Which of the following statements are true ?
 - (a) There exists a graph with one vertex of degree 7 and all other vertices of degree 6.
 - (b) A graph on 9 vertices with minimum degree 4 is connected.
 - (c) If G is a connected graph on 2023 vertices, then its diameter is at most 2000.
 - (d) If G is a connected graph on 2411 vertices, then its diameter is at least 24.
- 2. Which of the following is true about a tree ?
 - (a) It has at least two vertices of degree one.

- (b) It has n-1 edges.
- (c) It has a Hamiltonian cycle.
- (d) It has a Eulerian circuit.
- 3. Let $\alpha'(G)$ be the size of the maximum matching of a graph. Which of the following are correct ?
 - (a) $\alpha'(G) = 1$ for a star graph.
 - (b) $\alpha'(G) = 6$ for the hypercube graph on $\{0, 1\}^3$.
 - (c) $\alpha'(G) = 3$ for the cycle C_6 on 6 vertices.
 - (d) $\alpha'(G) = 3$ for the path P_7 on 7 vertices.
- 4. Which of the following are true about complete graph on n vertices ?
 - (a) It is a bi-partite graph for all $n \ge 1$.
 - (b) It has a perfect matching for all $n \ge 1$.
 - (c) The diameter is 1.
 - (d) It has n^{n-3} spanning trees.
- 5. Which of the following are true about designs ?
 - (a) A 2 (15, 3, 1) design has at least 15 blocks.
 - (b) There is a 3 (16, 4, 1) design that is not a $2 (16, 4, \lambda)$ design for any $\lambda \in \mathbb{N}$.
 - (c) In 2 (15, 3, 1) design, there is a point contained in at least 5 blocks and a point contained in at most 3 blocks.
 - (d) All k-subsets of [n] forms a $(k-1) \binom{n}{k}, k, n-k+1$ design.

2 PART B : 30 Points.

Answer any three questions only. All questions carry 10 points.

Give necessary justifications and explanations for all your arguments. If you are citing results from the class, mention it clearly.

- 1. Let S = [nm]. Let A_1, \ldots, A_m be a partition of S into *n*-sets. Let B_1, \ldots, B_m be another partition of S into *n*-sets. Show that there is an ordering of B_1, \ldots, B_n such that $A_i \cap B_i \neq \emptyset$.
- 2. Let $n \leq 2k$ and A_1, \ldots, A_m be a family of subset of [n] such that $A_i \cup A_j \neq [n], i, j$. Show that $m \leq (1 \frac{k}{n}) {n \choose k}$.

- 3. Let e be an edge in K_n , the complete graph on n-vertices. Show that the number of labelled spanning trees in $K_n e$ is $(n-2)n^{n-3}$.
- 4. Find the generating function and use the same to find the sequence explicitly in the following two cases.
 - (a) $a_{n+1} = 2a_n + n, n \ge 1$ and $a_0 = 1$.
 - (b) $a_{n+1} = a_{n+1} + a_{n-1}, n \ge 1$ and $a_0 = a_1 = 1$.
- 5. Let $(\mathcal{P}, \mathcal{B})$ be a $t (v, k, \lambda)$ design and $I \subset \mathcal{P}$ such that $|I| = i \leq t$. Show that the point set $\mathcal{P} \setminus I$ with blocks $\{B \setminus I : I \subset B \in \mathcal{B}\}$ is a design and determine the parameters.